Intergenerational Insurance

Alessia Russo (Padua and CEPR) Francesco Lancia (Venice and CEPR) Tim Worrall (Edinburgh)

Motivation

Motivation

2 minute read · April 3, 2023 1:27 PM GMT+2 · Last Updated 16 days ago

Pope says pension systems must not weigh on future generations Reuters

Motivation

- Fiscal reforms may be difficult to implement
 - Limited enforcement due to political constraints
- When fiscal reforms involve different generations, a distributional conflict may arise
 - Conflict resolution may imply a higher fiscal burden on future generations
 - Welfare losses arise due to partial intergenerational insurance

Research Questions

I. How should **optimal intergenerational insurance** be structured under **limited enforcement** frictions?

II. What are the implications in terms of **risk-spreading** across generations?

What We Do

- We characterize optimal intergenerational insurance under limited enforcement when agents belong to finitely-lived OLG
- ... while the past literature has characterized:
- i. Optimal intergenerational risk sharing under full enforcement (e.g., Aiyagari and Peled, 1991)
- ii. Intergenerational risk sharing as a voting equilibrium, which is not necessarily optimal (e.g., Cooley and Soares, 1999)
- iii. Optimal risk sharing under limited enforcement when agents are **infinitely lived** (e.g., Thomas and Worrall, 1988)

Mechanism in a Nutshell

A trade-off **Incentives** versus **Efficiency**:

- ✓ **Incentives**: Risk is partially spread onto future generations to provide incentives to the current generation to not walk away
- ⇒ Consumption depends on past shocks
- ✓ **Efficiency**: Period *resetting* in the provision of incentives to offset the welfare losses of shocks propagation
- ⇒ Consumption periodically resets to welfare maximising levels

Policy Implications

- Which policy institution may support the optimal allocation?
- A combination of taxes, transfers and state-contingent bonds can replicate the optimal allocation
- Limited enforcement implies a non-linear fiscal reaction function to public debt
 - ⇒ A form of **fiscal fatigue** (Gosh et al 2013)
- Public debt as a safe asset (good hedge)
 - \Rightarrow High sustainable debt even if expected primary surpluses are low (Brunnermeier et al 2022, Jiang et al 2022)

Presentation Outline

- i. Model
- ii. Full enforcement
- iii. Limited enforcement
- iv. Implications for debt sustainability

Model

- Discrete time $t = 0, 1, 2, ..., \infty$
- o Two-period living agents: Young and Old
- \circ Total endowment $e_t = e_t^y + e_t^o$ of perishable consumption good
- \circ Aggregate (**growth**) risk $\gamma_t = rac{e_t}{e_{t-1}}$
- o Idiosyncratic (distributional) risk $s_t = \frac{e_t^y}{e_t} \in \{s(1), s(2)\}$ with s(1) < s(2)
- $\circ \ \rho_t := (s_t, \gamma_t)$ with probability ϖ and $\rho^t := (\rho_1, \rho_2, ..., \rho_t) \in \mathcal{P}^t$

Model

- $\circ\,$ Young consumption $C(\rho^t)$ and old consumption $e_t-C(\rho^t)$
- \circ Logarithmic per-period utility function $u(\cdot) = \log(\cdot)$
- Given homogenous utility we can consider the de-trended economy and characterize

$$\{c\} = \{c(\rho^t) = \frac{C(\rho^t)}{e_t} : t \ge 0, \rho^t \in \mathcal{P}^t\}$$

g

Planner Problem

 The planner chooses {c} to maximize the sum of expected discounted utility of all generations

$$V\left(\{c\}; \rho^t\right) = \underbrace{\frac{\beta}{\delta} \left(\log(1 - c(\rho^t))\right)}_{\text{Current Old}} + \underbrace{\mathbb{E}_t \left[\sum_{j=t}^{\infty} \delta^{t-j} U\left(\{c\}; \rho^j\right)\right]}_{\text{Current Young and Fut. Gen.}}$$

where

$$U\left(\{c\}; \rho^t\right) = \log(c(\rho^t)) + \beta \sum_{\rho_{t+1}} \omega(\cdot, \rho_{t+1}) \log(1 - c(\cdot, \rho_{t+1}))$$

o Participation constraints of the old:

$$c(\rho^t) \le s_t \tag{1}$$

Participation constraints of the young:

$$U\left(\{c\}; \rho^t\right) \ge \log(s_t) + \beta \sum_{t} \omega(\cdot, \rho_{t+1}) \left(\log(1 - s_{t+1})\right) \quad (2)$$

Optimal Sustainable Intergenerational Insurance

 An Intergenerational Insurance rule is sustainable if the history-dependent consumption plan

$$\{c(\rho^t)\}_{t=0}^\infty \in \Lambda := \{\{c(\rho^t)\}_{t=0}^\infty \mid (1) \text{ and } (2)\}$$

• A Sustainable Intergenerational Insurance rule is **optimal** if it maximizes $V\left(\{c\}; \rho^t\right)$ subject to the constraint that the initial old receive a utility of at least ω_0 :

$$\log(1 - c(\rho_0)) \ge \omega_0$$

Assumptions

Assumption (1)

The idiosyncratic and aggregate shocks are iid: $\omega(\rho) = \pi(s)\varsigma(\gamma)$

 \Rightarrow Any sustainable intergenerational insurance rule $\{c\}$ depends **only** on the history of **idiosyncratic shocks**

Assumption (2)

$$\beta \sum_{r} \pi(r) \frac{s}{1-r} > 1$$

 \Rightarrow There exists a non-trivial sustainable intergenerational insurance that improves upon autarky

Recursive Formulation

- Let ω_r be the **state-contingent promise** to current young when next-period state is r and the promise to current old is ω
- The planner's optimization problem is:

$$\begin{split} V(s,\omega) &= \max_{\{c,(\omega_r)_{r\in\mathcal{I}}\}} \ \frac{\beta}{\delta} \log(1-c) + \log(c) + \delta \sum_r \pi(r) V(r,\omega_r) \end{split}$$
 subject to

$$BC: \omega_{\min}(r) \leq \omega_r \leq \omega_{\max}(r)$$

$$PC_o: c \leq s$$

$$PC_y : \log(c) + \beta \sum_r \pi(r)\omega_r \ge \log(s) + \beta \sum_r \pi(r)\log(1-r)$$

$$PK : \log(1-c) \ge \omega$$

For This Presentation

Simplifying assumptions:

- $\circ \beta = \delta$
- \circ BC and PC_o are not binding

Notation:

- $\circ \mu$ is the multiplier associated with PC_{ν}
- $\circ \lambda$ is the multiplier associated with *PK*
- o $c = \mathbf{c}(x)$ and $\omega_r = \mathbf{w}_r(x)$ with $x := (s, \omega)$ are the optimal consumption and state-contingent promised utility

Full Enforcement

- The Planner value $V(s,\omega)$ is subject to PK, but not PCy
- o The first-order conditions are:

$$rac{1-\mathbf{c}(x)}{\mathbf{c}(x)}=1+rac{\lambda(x)}{\mathbf{c}(x)}$$
 and $V_{\omega}(r,\mathbf{w}_r(x))=0$

The envelope condition is:

$$V_{\omega}(x) = -\lambda(x)$$

Full Enforcement

- The Planner value $V(s,\omega)$ is subject to PK, but not PCy
- The first-order conditions are:

$$rac{1-\mathbf{c}(x)}{\mathbf{c}(x)}=1+rac{\lambda(x)}{\mathbf{c}(x)}$$
 and $V_{\omega}(r,\mathbf{w}_r(x))=0$

The envelope condition is:

$$V_{\omega}(x) = -\lambda(x)$$

$$\begin{split} & \circ \ \, \text{There is } \omega^* = \log\left(\tfrac{1}{2}\right) = \sup\{\omega|V_\omega(x) = 0\} \\ & \Rightarrow \ \, \text{If } \omega_0 \leq \omega^* \text{ then } \lambda = 0 \text{ and } c_0 = c^* := \mathbf{c}(s_0,\omega^*) = \tfrac{1}{2} \\ & \Rightarrow \ \, \text{If } \omega_0 > \omega^* \text{ then } \lambda > 0 \text{ and } c_0 = \mathbf{c}(s_0,\omega_0) = 1 - \exp(\omega_0) \\ & \Rightarrow \ \, \mathbf{w}_r(s_0,\omega_0) = \omega^* \text{ for any } \omega_0,\, s_0,\, \text{and } r \end{split}$$

Full Enforcement

Proposition

Under full enforcement, the optimal allocation is stationary and the long-run distribution of ω is degenerate with mass at ω^*

Limited Enforcement

- \circ The Planner value $V(s,\omega)$ is subject to both PK and PCy
- o The first-order conditions are:

$$\frac{1 - \mathbf{c}(x)}{\mathbf{c}(x)} = \frac{1 + \lambda(x)}{1 + \mu(x)} \quad \text{and} \quad V_{\omega}(r, \mathbf{w}_r(x)) = -\mu(x)$$

The envelope condition is:

$$V_{\omega}(x) = -\lambda(x)$$

 \Rightarrow Updating rule:

$$V_{\omega}(r, \mathbf{w}_r(x)) = -\lambda(r, \mathbf{w}_r(x)) = -\mu(x)$$

Limited Enforcement

- \circ The Planner value $V(s,\omega)$ is subject to both PK and PCy
- o The first-order conditions are:

$$\frac{1 - \mathbf{c}(x)}{\mathbf{c}(x)} = \frac{1 + \lambda(x)}{1 + \mu(x)} \quad \text{and} \quad V_{\omega}(r, \mathbf{w}_r(x)) = -\mu(x)$$

The envelope condition is:

$$V_{\omega}(x) = -\lambda(x)$$

⇒ Updating rule:

$$V_{\omega}(r, \mathbf{w}_r(x)) = -\lambda(r, \mathbf{w}_r(x)) = -\mu(x)$$

- $\circ \ \ {\rm There \ is \ } \omega^0(s) = \sup\{\omega|V_\omega(s,\omega) = 0\} \leq \omega^* \ \forall s$
- \Rightarrow If $\omega_0 \leq \omega^0(s_0)$ then $\lambda = 0$ and $c_0 = \mathbf{c}(s_0, \omega^0(s_0)) \geq \frac{1}{2}$
- \Rightarrow If $\omega_0 > \omega^0(s_0)$ then $\lambda > 0$ and $c_0 = \mathbf{c}(s_0, \omega_0) = 1 \exp(\omega_0)$

Dynamics of Promised Utility

- The Planner would like to promise $\omega^0(s)$ to the current young
- \circ But if PC_y is binding, the current young will refuse it
- o In this case, the Planner must promise more to relax PC_y of the current young
- \circ A higher promised utility means that more consumption must be delivered to next-period old, which tightens PC_y of future young

Dynamics of Promised Utility

Proposition

Assume that c^* violates PC_y in at least one s and $s(1) \le c^*$, the optimal policy $\mathbf{w}_r(s,\omega)$ is

- \circ increasing in ω
- o increasing in s
- o decreasing in r
- there is a critical $\omega^c > \omega^0(1)$ such that $\mathbf{w}_r(1,\omega) = \omega^0(r)$ if $\omega \leq \omega^c$ (resetting)
- \circ there is a unique fixed point $\omega^f(s) = \mathbf{w}_s(s, \omega^f(s)) = \omega^* \ \forall s$

Dynamics of Promised Utility

Proposition

Under limited enforcement, the optimal allocation is history dependent and the long-run distribution of ω is non degenerate in an ergodic set with countable infinite states

Dynamics of Consumption

Consumption of adjacent generations is serially **correlated** and does **not** follow a random walk

Stochastic Discount Factor

In an equilibrium model, the SDF is

$$M_{t,t+1} = \beta \frac{u'(e_{t+1} - C(\rho^{t+1}))}{u'(C(\rho^t))}$$

In the sustainable optimal allocation, the SDF is

$$M_{t,t+1} = \underbrace{\delta \cdot \frac{\mathbf{c}(x_t)/(1+\mu(x_t))}{\mathbf{c}(x_{t+1})/(1+\mu(x_{t+1}))} \cdot \frac{e_t}{e_{t+1}}}_{m_{t,t+1}}$$

Stochastic Discount Factor

In an equilibrium model, the SDF is

$$M_{t,t+1} = \beta \frac{u'(e_{t+1} - C(\rho^{t+1}))}{u'(C(\rho^t))}$$

In the sustainable optimal allocation, the SDF is

$$M_{t,t+1} = \underbrace{\delta \cdot \frac{\mathbf{c}(x_t)/(1+\mu(x_t))}{\mathbf{c}(x_{t+1})/(1+\mu(x_{t+1}))} \cdot \frac{e_t}{e_{t+1}}}_{m_{t,t+1}}$$

Proposition

- \circ Under full enforcement, the SDF is $M^*_{t,t+1} = \delta rac{e_t}{e_{t+1}}$.
- Under limited enforcement, the SDF is decreasing in γ_{t+1} , increasing in s_{t+1} and decreasing (non-linearly) in ω_t

Sustainable Public Debt

• The Planner uses one-period state-contingent bond $B_{r,t+1}$ in zero net supply and taxes \mathcal{T}_t to repay outstanding debt D_t

$$D_t = \mathcal{T}_t + \sum_r q_{r,t+1} B_{r,t+1}$$

where state prices are

$$q_{r,t+1} := \pi(r)M_{t,t+1} = \pi(r)\beta \frac{u'(e_{t+1}^0 + B_{r,t+1})}{u'(e_t^y - \mathcal{T}_t - \sum_r q_{r,t+1}B_{r,t+1})}$$

$$\circ \ \operatorname{Let} \ d_t := \frac{D_t}{e_t s_t}, \ \tau_t := \frac{\mathcal{T}_t}{e_t s_t} \ \mathrm{and} \ b_{r,t+1} := \frac{B_{r,t+1}}{e_{t+1} s_{t+1}}$$

Dynamics of Debt

Dynamics of promises \iff Dynamics of debt

$$\omega_t = \log(1 - c_t) = \log(1 - s_t(1 - d_t)) \rightarrow d_t = \mathbf{d}(s_t, \omega_t)$$

Bond Revenue

Below d^c bond revenue decreases since bond prices decrease and bond issuance is constant. Above d^c bond revenue can increase

Fiscal Reaction Function

The fiscal reaction function is non-linear in the outstanding debt: a form of fiscal-fatigue

Debt Valuation

Under transversality condition, the budget constraint is

$$D_t = \overbrace{\mathcal{T}_t + \sum_{j=1}^{\infty} \mathbb{E}_t[M_{t,t+j}\mathcal{T}_{t+j}]}^{\mathsf{NPV Primary Surpluses}}$$

where

$$\mathbb{E}_t[M_{t,t+j}\mathcal{T}_{t+j}] = \mathbb{E}_t[M_{t,t+j}] \cdot \mathbb{E}_t[\mathcal{T}_{t+j}] + COV_t[M_{t,t+j},\mathcal{T}_{t+j}]$$

o If $COV_t[M_{t,t+j}, \mathcal{T}_{t+j}] > (\leq)0$, then the sustainable debt is larger(lower) than the sum of future surpluses discounted at the risk free rate $\mathbb{E}_t[M_{t,t+j}]$

Debt Valuation

- \circ Surplus \mathcal{T}_{t+k} increases with both γ_{t+k} (pro-cyclical) and s_{t+k}
- \circ The SDF $M_{t,t+k}$ decreases with γ_{t+k} (counter-cyclical) and increases with s_{t+k}
- \Rightarrow The $COV_t[M_{t,t+k}\mathcal{T}_{t+k}]$ can be decomposed in two terms

$$\underbrace{\mathbb{E}_{t}[m_{t,t+k}]\mathbb{E}[s_{t+k}\tau_{t+k}] \left(1 - \mathbb{E}\left(\frac{1}{\gamma}\right)^{k}\mathbb{E}(\gamma)^{k}\right)}_{\geq <0} + \underbrace{\mathbb{E}_{t}[m_{t,t+k}s_{t+k}\tau_{t+k}] - \mathbb{E}_{t}[m_{t,t+k}]\mathbb{E}_{t}[s_{t+k}\tau_{t+k}]}_{>0}$$

Full Enforcement: $\frac{D_1}{\rho_1} = 0.10$

-18

Under full enforcement, a positive amount of debt can be sustained only if expected future surpluses

10

15

5

Limited Enforcement:

Under limited enforcement, a positive amount of debt can be sustained even if expected future deficits (debt as good hedge)

Conclusions

- We developed a theory of intergenerational insurance in a stochastic OLG model under limited enforcement
- The model implies that:
 - i. Generational risk is spread across future generations because of the consecutive participation constraints
 - ii. The optimum provides the basis for the design of a sustainable public debt

Conclusions

- We developed a theory of intergenerational insurance in a stochastic OLG model under limited enforcement
- o The model implies that:
 - Generational risk is spread across future generations because of the consecutive participation constraints
 - ii. The optimum provides the basis for the design of a sustainable public debt
- Potential directions for future research:
 - i. Richer demographic structure
 - ii. Storage technology

Appendix

Value Function Under Full Enforcement

